3.96 \(\int (d x)^m (a+b \tanh ^{-1}(c x^2)) \, dx\)

Optimal. Leaf size=74 \[ \frac {(d x)^{m+1} \left (a+b \tanh ^{-1}\left (c x^2\right )\right )}{d (m+1)}-\frac {2 b c (d x)^{m+3} \, _2F_1\left (1,\frac {m+3}{4};\frac {m+7}{4};c^2 x^4\right )}{d^3 (m+1) (m+3)} \]

[Out]

(d*x)^(1+m)*(a+b*arctanh(c*x^2))/d/(1+m)-2*b*c*(d*x)^(3+m)*hypergeom([1, 3/4+1/4*m],[7/4+1/4*m],c^2*x^4)/d^3/(
1+m)/(3+m)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {6097, 16, 364} \[ \frac {(d x)^{m+1} \left (a+b \tanh ^{-1}\left (c x^2\right )\right )}{d (m+1)}-\frac {2 b c (d x)^{m+3} \, _2F_1\left (1,\frac {m+3}{4};\frac {m+7}{4};c^2 x^4\right )}{d^3 (m+1) (m+3)} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*(a + b*ArcTanh[c*x^2]),x]

[Out]

((d*x)^(1 + m)*(a + b*ArcTanh[c*x^2]))/(d*(1 + m)) - (2*b*c*(d*x)^(3 + m)*Hypergeometric2F1[1, (3 + m)/4, (7 +
 m)/4, c^2*x^4])/(d^3*(1 + m)*(3 + m))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
nh[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 - c^2*x^(2*n)), x], x
] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int (d x)^m \left (a+b \tanh ^{-1}\left (c x^2\right )\right ) \, dx &=\frac {(d x)^{1+m} \left (a+b \tanh ^{-1}\left (c x^2\right )\right )}{d (1+m)}-\frac {(2 b c) \int \frac {x (d x)^{1+m}}{1-c^2 x^4} \, dx}{d (1+m)}\\ &=\frac {(d x)^{1+m} \left (a+b \tanh ^{-1}\left (c x^2\right )\right )}{d (1+m)}-\frac {(2 b c) \int \frac {(d x)^{2+m}}{1-c^2 x^4} \, dx}{d^2 (1+m)}\\ &=\frac {(d x)^{1+m} \left (a+b \tanh ^{-1}\left (c x^2\right )\right )}{d (1+m)}-\frac {2 b c (d x)^{3+m} \, _2F_1\left (1,\frac {3+m}{4};\frac {7+m}{4};c^2 x^4\right )}{d^3 (1+m) (3+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 64, normalized size = 0.86 \[ -\frac {x (d x)^m \left (2 b c x^2 \, _2F_1\left (1,\frac {m+3}{4};\frac {m+7}{4};c^2 x^4\right )-(m+3) \left (a+b \tanh ^{-1}\left (c x^2\right )\right )\right )}{(m+1) (m+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*(a + b*ArcTanh[c*x^2]),x]

[Out]

-((x*(d*x)^m*(-((3 + m)*(a + b*ArcTanh[c*x^2])) + 2*b*c*x^2*Hypergeometric2F1[1, (3 + m)/4, (7 + m)/4, c^2*x^4
]))/((1 + m)*(3 + m)))

________________________________________________________________________________________

fricas [F]  time = 0.56, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \operatorname {artanh}\left (c x^{2}\right ) + a\right )} \left (d x\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arctanh(c*x^2)),x, algorithm="fricas")

[Out]

integral((b*arctanh(c*x^2) + a)*(d*x)^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {artanh}\left (c x^{2}\right ) + a\right )} \left (d x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arctanh(c*x^2)),x, algorithm="giac")

[Out]

integrate((b*arctanh(c*x^2) + a)*(d*x)^m, x)

________________________________________________________________________________________

maple [F]  time = 0.18, size = 0, normalized size = 0.00 \[ \int \left (d x \right )^{m} \left (a +b \arctanh \left (c \,x^{2}\right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a+b*arctanh(c*x^2)),x)

[Out]

int((d*x)^m*(a+b*arctanh(c*x^2)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, {\left (4 \, c d^{m} \int \frac {x^{2} x^{m}}{c^{2} {\left (m + 1\right )} x^{4} - m - 1}\,{d x} + \frac {d^{m} x x^{m} \log \left (c x^{2} + 1\right ) - d^{m} x x^{m} \log \left (-c x^{2} + 1\right )}{m + 1}\right )} b + \frac {\left (d x\right )^{m + 1} a}{d {\left (m + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arctanh(c*x^2)),x, algorithm="maxima")

[Out]

1/2*(4*c*d^m*integrate(x^2*x^m/(c^2*(m + 1)*x^4 - m - 1), x) + (d^m*x*x^m*log(c*x^2 + 1) - d^m*x*x^m*log(-c*x^
2 + 1))/(m + 1))*b + (d*x)^(m + 1)*a/(d*(m + 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (d\,x\right )}^m\,\left (a+b\,\mathrm {atanh}\left (c\,x^2\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a + b*atanh(c*x^2)),x)

[Out]

int((d*x)^m*(a + b*atanh(c*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d x\right )^{m} \left (a + b \operatorname {atanh}{\left (c x^{2} \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(a+b*atanh(c*x**2)),x)

[Out]

Integral((d*x)**m*(a + b*atanh(c*x**2)), x)

________________________________________________________________________________________